Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Nutr Biochem ; 123: 109492, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37866427

RESUMEN

Every year, thousands of children, particularly those under 5 years old, die because of cerebral malaria (CM). Following conventional treatment, approximately 25% of surviving individuals have lifelong severe neurocognitive sequelae. Therefore, improved conventional therapies or effective alternative therapies that prevent the severe infection are crucial. Omega-3 (Ω-3) polyunsaturated fatty acids (PUFAs) are known to have antioxidative and anti-inflammatory effects and protect against diverse neurological disorders, including Alzheimer's and Parkinson's diseases. However, little is known regarding the effects of Ω-3 PUFAs against parasitic infections. In this study, C57BL/6 mice received supplemental treatment of a fish oil rich in the Ω-3 PUFA, docosahexaenoic acid (DHA), which was started 15 days prior to infection with Plasmodium berghei ANKA and was maintained until the end of the study. Animals treated with the highest doses of DHA, 3.0 and 6.0 g/kg body weight, had 60 and 80% chance of survival, respectively, while all nontreated mice died by the 7th day postinfection due to CM. Furthermore, the parasite load during the critical period for CM development (5th to 11th day postinfection) was controlled in treated mice. However, after this period all animals developed high levels of parasitemia until the 20th day of infection. DHA treatment also effectively reduced blood-brain barrier (BBB) damage and brain edema and completely prevented brain hemorrhage and vascular occlusion. A strong anti-inflammatory profile was observed in the brains of DHA-treated mice, as well as, an increased number of neutrophil and reduced number of CD8+ T leukocytes in the spleen. Thus, this is the first study to demonstrate that the prophylactic use of DHA-rich fish oil exerts protective effects against experimental CM, reducing the mechanical and immunological events caused by the P. berghei ANKA infection.


Asunto(s)
Ácidos Grasos Omega-3 , Malaria Cerebral , Niño , Humanos , Ratones , Animales , Preescolar , Aceites de Pescado/farmacología , Ácidos Docosahexaenoicos/farmacología , Ácidos Docosahexaenoicos/uso terapéutico , Malaria Cerebral/prevención & control , Malaria Cerebral/tratamiento farmacológico , Ratones Endogámicos C57BL , Ácidos Grasos Omega-3/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
2.
Zhongguo Zhong Yao Za Zhi ; 48(18): 4902-4907, 2023 Sep.
Artículo en Chino | MEDLINE | ID: mdl-37802832

RESUMEN

Malaria, one of the major global public health events, is a leading cause of mortality and morbidity among children and adults in tropical and subtropical regions(mainly in sub-Saharan Africa), threatening human health. It is well known that malaria can cause various complications including anemia, blackwater fever, cerebral malaria, and kidney damage. Conventionally, cardiac involvement has not been listed as a common reason affecting morbidity and mortality of malaria, which may be related to ignored cases or insufficient diagnosis. However, the serious clinical consequences such as acute coronary syndrome, heart failure, and malignant arrhythmia caused by malaria have aroused great concern. At present, antimalarials are commonly used for treating malaria in clinical practice. However, inappropriate medication can increase the risk of cardiovascular diseases and cause severe consequences. This review summarized the research advances in the cardiovascular complications including acute myocardial infarction, arrhythmia, hypertension, heart failure, and myocarditis in malaria. The possible mechanisms of cardiovascular diseases caused by malaria were systematically expounded from the hypotheses of cell adhesion, inflammation and cytokines, myocardial apoptosis induced by plasmodium toxin, cardiac injury secondary to acute renal failure, and thrombosis. Furthermore, the effects of quinolines, nucleoprotein synthesis inhibitors, and artemisinin and its derivatives on cardiac structure and function were summarized. Compared with the cardiac toxicity of quinolines in antimalarial therapy, the adverse effects of artemisinin-derived drugs on heart have not been reported in clinical studies. More importantly, the artemisinin-derived drugs demonstrate favorable application prospects in the prevention and treatment of cardiovascular diseases, and are expected to play a role in the treatment of malaria patients with cardiovascular diseases. This review provides reference for the prevention and treatment of malaria-related cardiovascular complications as well as the safe application of antimalarials.


Asunto(s)
Antimaláricos , Artemisininas , Enfermedades Cardiovasculares , Insuficiencia Cardíaca , Malaria Cerebral , Quinolinas , Niño , Adulto , Humanos , Antimaláricos/farmacología , Enfermedades Cardiovasculares/tratamiento farmacológico , Artemisininas/farmacología , Malaria Cerebral/tratamiento farmacológico , Insuficiencia Cardíaca/tratamiento farmacológico , Arritmias Cardíacas/tratamiento farmacológico
3.
Med Trop Sante Int ; 3(2)2023 06 30.
Artículo en Francés | MEDLINE | ID: mdl-37525671

RESUMEN

In 2022 as in 1884, the clinical presentation of uncomplicated malaria is unspecific: fever of variable intensity, continuous or rhythmic, chills, flu syndrome, headache, respiratory and digestive disorders. At any time, it can evolve into a severe form (ex-pernicious attack or cerebral malaria) or even lethal. By reading again Alphonse Laveran's book on malarial fevers, we realized to what extent the observations made at that time allowed for a methodical and orderly description of the clinical forms of malaria, very close to what we can still observe today. No symptom or sign is pathognomonic of the disease. Only the detection of plasmodia or "malaria microbes" by direct or immuno-chromatographic methods allows for diagnostic confirmation, which is a prerequisite for the implementation of a curative treatment.Serendipity, synthetic chemistry and traditional medicine are the three methods that led to the discovery and large-scale production of antimalarial drugs. Serendipity for quinine, synthetic chemistry for chloroquine, and research conducted around traditional Chinese medicine for artemisinin and its derivatives. The latter have marked a real revolution in the management of malaria, both in its uncomplicated and severe forms. However, as with other antimalarial drugs, its medium- and long-term efficacy is compromised by the emergence and spread of resistance in malaria parasites, particularly P. falciparum. The control and eradication of malaria therefore require continued research in both prevention and therapy.The disease so well described by Alphonse Laveran has not yet said its last word….


Asunto(s)
Antimaláricos , Malaria Cerebral , Plasmodium , Humanos , Antimaláricos/uso terapéutico , Quinina , Cloroquina , Malaria Cerebral/tratamiento farmacológico
4.
Parasitol Int ; 97: 102789, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37473798

RESUMEN

Plasmodium falciparum parasites are the primary cause of malaria across Africa. The problem of drug resistance to malaria is ever growing and novel therapeutic strategies need to be developed, particularly those targeting the parasite and also the host or host-pathogen interaction. Previous studies have shown that the development of cerebral malaria (CM) is related to dysregulation of the immune system in a murine malaria model of experimental cerebral malaria. It involves a complex interaction of events and interferon-gamma seems to be the unifying factor. Therefore, the antiplasmodial activity targeting the parasite and immunomodulatory strategies that reduce overall host inflammation, with IFN-γ in focus, could delay CM onset and prove beneficial in malaria infection therapy. Phyllanthus niruri is used to treat fever and other symptoms of malaria in Nigeria. Its modes of action as an anti-malarial remedy have not been exhaustively investigated. This study therefore examined the aqueous extract of P. niruri (PE) for its antiplasmodial activity in vitro using the Plasmodium falciparum HB3 strain. Furthermore, in vivo murine malaria model using the Plasmodium berghei ANKA strain was used to investigate its anti-malarial effects. We showed that PE has multiple anti-malarial effects, including anti-parasitic and host immunomodulatory activities. Co-culture of P. falciparum with PE and some of its phytoconstituents drastically reduced parasite number. PE also decreased parasitemia, and increased the survival of infected mice. We also observed that the integrity of the blood-brain barrier was maintained in the PE-treated mice. The results confirmed that PE showed moderate antiplasmodial activity. In vivo murine malaria model using P. berghei ANKA for experimental cerebral malaria revealed that PE suppressed parasite growth, and modulate the production of interferon-gamma. The findings demonstrate that PE affects malaria progression, targeting parasites and host cells.


Asunto(s)
Antimaláricos , Malaria Cerebral , Malaria Falciparum , Phyllanthus , Ratones , Animales , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Malaria Cerebral/tratamiento farmacológico , Interferón gamma , Extractos Vegetales/farmacología , Plasmodium falciparum , Nigeria , Plasmodium berghei
5.
Mol Biochem Parasitol ; 255: 111579, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37385350

RESUMEN

Cerebral Malaria (CM) is associated with the complex neurological syndrome, whose pathology is mediated by severe inflammatory processes following infection with Plasmodium falciparum. Coenzyme-Q10 (Co-Q10) is a potent anti-inflammatory, anti-oxidant, and anti-apoptotic agent with numerous clinical applications. The aim of this study was to elucidate the role of oral administration of Co-Q10 on the initiation or regulation of inflammatory immune response during experimental cerebral malaria (ECM). For this purpose, the pre-clinical effect of Co-Q10 was evaluated in C57BL/6 J mice infected with Plasmodium berghei ANKA (PbA). Treatment with Co-Q10 resulted in the reduction of infiltrating parasite load, greatly improved the survival rate of PbA-infected mice that occurred independent of parasitaemia and prevented PbA-induced disruption of the blood-brain barrier (BBB) integrity. Exposure to Co-Q10 resulted in the reduction of infiltration of effector CD8 + T cells in the brain and secretion of cytolytic Granzyme B molecules. Notably, Co-Q10-treated mice had reduced levels of CD8 +T cell chemokines CXCR3, CCR2, and CCR5 in the brain following PbA-infection. Brain tissue analysis showed a reduction in the levels of inflammatory mediators TNF- α, CCL3, and RANTES in Co-Q10 administered mice. In addition, Co-Q10 modulated the differentiation and maturation of both splenic and brain dendritic cells and cross-presentation (CD8α+DCs) during ECM. Remarkably, Co-Q10 was very effective in decreasing levels of CD86, MHC-II, and CD40 in macrophages associated with ECM pathology. Exposure to Co-Q10 resulted in increased expression levels of Arginase-1 and Ym1/chitinase 3-like 3, which is linked to ECM protection. Furthermore, Co-Q10 supplementation prevented PbA-induced depletion of Arginase and CD206 mannose receptor levels. Co-Q10 abrogated PbA-driven elevation in pro-inflammatory cytokines IL-1ß, IL-18, and IL-6 levels. In conclusion, the oral supplementation with Co-Q10 decelerates the occurrence of ECM by preventing lethal inflammatory immune responses and dampening genes associated with inflammation and immune-pathology during ECM, and offers an inimitable opening for developing an anti-inflammatory agent against cerebral malaria.


Asunto(s)
Malaria Cerebral , Ratones , Animales , Malaria Cerebral/tratamiento farmacológico , Malaria Cerebral/prevención & control , Arginasa , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Inmunidad , Plasmodium berghei
6.
J Ethnopharmacol ; 310: 116390, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-36965546

RESUMEN

ETHNOPHARMACOLOGY RELEVANCE: Alstonia boonei De Wild. (stem bark), Anacardium occidentale L. (stem bark), Azadirachta indica A.Juss (leaves), Enantia chlorantha Oliv. (stem bark), Khaya senegalensis A.Juss (stem bark) Mangifera indica L. (stem bark), and Nauclea latifolia Sm. (stem bark) are used for treating malaria in southwest Nigeria. Surveys revealed that these plants are also employed for treating symptoms of malaria and cerebral malaria in the region. AIM OF THE STUDY: In this study, the effects of freeze-dried extracts of these plants were investigated on synthetic hemozoin (HZ)-induced neuroinflammation, neuronal damage, and increased permeability of brain microvascular endothelial cells. MATERIALS AND METHODS: Effects of freeze-dried plant extracts were investigated on neuroinflammation by measuring levels of pro-inflammatory mediators in culture supernatants, while in-cell western assays were used to measure protein levels of iNOS and NLRP3. Effects on HZ-induced neurotoxicity and ROS generation was measured using MTT and DCFDA assays, respectively. HZ-induced permeability of hCMEC/D3 endothelial cells was determined using the in vitro vascular permeability assay kit. RESULTS: The extracts produced significant (p < 0.05) reduction in TNFα, IL-6, IL-1ß, MCP-1, RANTES and iNOS/NO production in HZ-stimulated BV-2 microglia. Pre-treatment with 50 µg/mL of A. boonei, A. indica, A. occidentale, E. chlorantha and M. indica also resulted in the inhibition of NF-κB activation. Pre-treatment with A. indica produced, A. occidentale, M. indica and A. boonei reduced HZ-induced increased NLRP3 protein expression. HZ-induced increased caspase-1 activity was also reduced by A. boonei, A. occidentale, A. indica, E. chlorantha, and M. indica. Freeze-dried extracts of A. boonei, A. occidentale, A. indica and M. indica produced neuroprotective effect in HT-22 neuronal cells incubated with HZ by preventing HZ-induced neurotoxicity, ROS generation, DNA fragmentation and caspase 3/7 activity. Inhibition of HZ-induced increase in permeability of human hCMEC/D3 brain endothelial cells was also observed with A. boonei, A. occidentale, A. indica and M. indica, while reducing the release of TNFα and MMP-9. CONCLUSIONS: These results suggest that A. boonei, A. occidentale, A. indica and M. indica are neuroprotective through inhibition of neuroinflammation, neuronal damage and increased permeability of blood brain barrier. The outcome of the study provides pharmacological evidence for the potential benefits of plants as herbal treatments for cerebral malaria symptoms.


Asunto(s)
Alstonia , Anacardium , Azadirachta , Malaria Cerebral , Mangifera , Humanos , Factor de Necrosis Tumoral alfa , Malaria Cerebral/tratamiento farmacológico , Enfermedades Neuroinflamatorias , Neuroprotección , Células Endoteliales , Especies Reactivas de Oxígeno , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
7.
ACS Infect Dis ; 7(10): 2836-2849, 2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34254783

RESUMEN

Cerebral malaria (CM) is caused by Plasmodium falciparum, resulting in severe sequelae; one of its pathogenic factors is the low bioavailability of nitric oxide (NO). Our previous study suggested that the combination of artesunate (AS) and tetramethylpyrazine (TMP) exerts an adjuvant therapeutic effect on the symptoms of experimental CM (ECM) and that NO regulation plays an important role. In the present study, we further verified the effects of AS+TMP on cerebral blood flow (CBF) and detected NO-related indicators. We focused on the role of NO through S-nitrosoproteome based on previous proteomics data and explored the mechanism of AS+TMP for improving pathological ECM symptoms. We observed that AS+TMP reduces adhesion, increases CBF, and regulates NO synthase (NOS) activity, thereby regulating the level of S-nitrosothiols, such as metabolism-related or neuro-associated receptors, for improving ECM symptoms. These results demonstrated that AS+TMP could be an effective strategy in adjuvant therapy of CM.


Asunto(s)
Malaria Cerebral , Proteína S , Artesunato , Humanos , Malaria Cerebral/tratamiento farmacológico , Óxido Nítrico , Pirazinas
8.
IUBMB Life ; 72(12): 2637-2650, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33037778

RESUMEN

The declining effectiveness of the available antimalarial drugs due to drug resistance requires a continued effort to develop new therapeutic approaches. In this context, combination therapies hold a great promise for developing effective first-line antimalarial treatments for reducing malaria mortality. The present study explores the antimalarial efficacy of nanotized formulation of curcumin in combination with benzothiophene compound 6 (3-bromo-N-(4-fluorobenzyl)-benzo[b]thiophene-2-carboxamide) with a view to achieve better efficacy at a very low dose in comparison to that accomplished with monotherapy alone. Herein, we formulated nanotized conjugate of curcumin and compound 6 (cur-compound 6) in the size range of 30-90 nm as observed via TEM, AFM and DLS analysis in the study. The nanotized preparation was found to be readily dispersible in water, physically and chemically stable and exhibited sustained release profile of both curcumin and compound 6 till 48 hr. Treatment of P. falciparum parasites with the nanotized conjugate for 24 hr resulted in rapid clearance of the parasites. Furthermore, P. berghei infected mice treated with nanotized conjugate formulation survived till 90 days with complete eradication of the parasites from RBC. This improved efficacy of the nanotized formulation was possible because of the increased absorption of the compounds via oral administration owing to enhanced dispersibility of the formulation in aqueous medium. Moreover, an improved oral bioavailability of the nanotized formulation lowered the dosage at which the pharmacological effect was achieved while avoiding any observable adverse harmful side effects.


Asunto(s)
Antimaláricos/farmacología , Curcumina/farmacología , Malaria Cerebral/tratamiento farmacológico , Malaria Falciparum/tratamiento farmacológico , Nanopartículas/administración & dosificación , Plasmodium berghei/efectos de los fármacos , Tiofenos/química , Administración Oral , Animales , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacología , Antimaláricos/administración & dosificación , Antimaláricos/química , Disponibilidad Biológica , Curcumina/administración & dosificación , Curcumina/química , Malaria Cerebral/parasitología , Malaria Cerebral/patología , Malaria Falciparum/parasitología , Malaria Falciparum/patología , Ratones , Ratones Endogámicos C57BL , Nanopartículas/química
9.
Sci Rep ; 8(1): 15957, 2018 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-30374028

RESUMEN

Vascular dysfunction associated with low nitric oxide (NO) biavailability and low plasma L-arginine levels is observed in both human and experimental cerebral malaria (ECM). In ECM, cerebrovascular constriction results in decreased pial blood flow and hypoxia, and administration of NO donors reverses constriction and increases survival. Supplementation of L-arginine, the substrate for NO synthesis by NO synthases, has been considered as a strategy to improve vascular health and act as adjunctive therapy in human severe malaria. We investigated the effect of L-arginine supplementation on pial vascular tonus of mice with ECM after direct superfusion on the brain surface or systemic delivery. Pial arteriolar diameters of Plasmodium berghei-infected mice with implanted cranial windows were measured using intravital microscopy methods, before and after L-arginine administration. Systemic delivery of L-arginine was performed intravenously, at 10, 50, 100 and 200 mg/kg, as bolus injection or slowly through osmotic pumps, combined or not with artesunate. Direct superfusion of L-arginine (10-7M, 10-5M and 10-3M) on the brain surface of mice with ECM resulted in immediate, consistent and dose-dependent dilation of pial arterioles. ECM mice showed marked cerebrovascular constriction that progressively worsened over a 24 h-period after subcutaneous saline bolus administration. L-arginine administration prevented the worsening in pial constriction at all the doses tested, and at 50 mg/kg and 100 mg/kg it induced temporary reversal of vasoconstriction. Slow, continuous delivery of L-arginine by osmotic pumps, or combined bolus administration of artesunate with L-arginine, also prevented worsening of pial constriction and resulted in improved survival of mice with ECM. L-arginine ameliorates pial vasoconstriction in mice with ECM.


Asunto(s)
Arginina/farmacología , Vasoconstricción/efectos de los fármacos , Animales , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Arginina/uso terapéutico , Artesunato/farmacología , Artesunato/uso terapéutico , Arterias Cerebrales/efectos de los fármacos , Arterias Cerebrales/fisiología , Relación Dosis-Respuesta a Droga , Femenino , Malaria Cerebral/tratamiento farmacológico , Malaria Cerebral/mortalidad , Malaria Cerebral/veterinaria , Ratones , Ratones Endogámicos C57BL , Donantes de Óxido Nítrico/farmacología , Donantes de Óxido Nítrico/uso terapéutico , Óxido Nítrico Sintasa/metabolismo , Plasmodium berghei/patogenicidad , Tasa de Supervivencia
10.
Zhongguo Zhong Yao Za Zhi ; 43(15): 3051-3057, 2018 Aug.
Artículo en Chino | MEDLINE | ID: mdl-30200698

RESUMEN

Cerebral malaria (CM) is the leading cause of death in children under 5 years in Africa, severe neurological sequelae may occur in surviving children. Although artesunate has made breakthrough progress in the clinical treatment of CM, the clinical problems of high mortality and high morbidity have not yet been completely resolved. In this study, an experimental cerebral malaria (ECM) model was established by infecting C57BL/6 mice with Pb ANKA (Plasmodium berghei ANKA) to compare parasitemia level, survival rates, and rapid murine coma behavior scale scores, cerebral microvascular obstruction, haemozoin deposition in the liver, body temperature and weight to investigate the anti-cerebral malaria effect of the artesunate compound combination. The results showed that the artesunate compound combination could improve the survival rate of Pb ANKA-infected mice, reduce the level of parasitemia, effectively improve the symptoms of ECM neurological injury, reduce cerebrovascular obstruction and haemozoin deposition in the liver, and also significantly improve body temperature, weight and other basic indicators. The results showed that the artesunate compound combination improved the pathological changes and neurological damage caused by CM. It is expected to provide a theoretical basis for human cerebral malaria patients in clinical adjuvant therapy.


Asunto(s)
Antimaláricos/farmacología , Artesunato/farmacología , Malaria Cerebral/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Plasmodium berghei
11.
Proc Natl Acad Sci U S A ; 115(10): E2366-E2375, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29463745

RESUMEN

Cerebral malaria (CM) is a severe and rapidly progressing complication of infection by Plasmodium parasites that is associated with high rates of mortality and morbidity. Treatment options are currently few, and intervention with artemisinin (Art) has limited efficacy, a problem that is compounded by the emergence of resistance to Art in Plasmodium parasites. Rocaglates are a class of natural products derived from plants of the Aglaia genus that have been shown to interfere with eukaryotic initiation factor 4A (eIF4A), ultimately blocking initiation of protein synthesis. Here, we show that the rocaglate CR-1-31B perturbs association of Plasmodium falciparum eIF4A (PfeIF4A) with RNA. CR-1-31B shows potent prophylactic and therapeutic antiplasmodial activity in vivo in mouse models of infection with Plasmodium berghei (CM) and Plasmodium chabaudi (blood-stage malaria), and can also block replication of different clinical isolates of P. falciparum in human erythrocytes infected ex vivo, including drug-resistant P. falciparum isolates. In vivo, a single dosing of CR-1-31B in P. berghei-infected animals is sufficient to provide protection against lethality. CR-1-31B is shown to dampen expression of the early proinflammatory response in myeloid cells in vitro and dampens the inflammatory response in vivo in P. berghei-infected mice. The dual activity of CR-1-31B as an antiplasmodial and as an inhibitor of the inflammatory response in myeloid cells should prove extremely valuable for therapeutic intervention in human cases of CM.


Asunto(s)
Aglaia/química , Antimaláricos/administración & dosificación , Malaria Cerebral/tratamiento farmacológico , Extractos Vegetales/administración & dosificación , Animales , Modelos Animales de Enfermedad , Eritrocitos/parasitología , Factor 4F Eucariótico de Iniciación/genética , Factor 4F Eucariótico de Iniciación/metabolismo , Femenino , Humanos , Malaria Cerebral/inmunología , Malaria Cerebral/parasitología , Ratones , Ratones Endogámicos C57BL , Plasmodium berghei/efectos de los fármacos , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
12.
Microb Pathog ; 107: 69-74, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28336326

RESUMEN

The development and spread of multidrug-resistant strains of malarial parasites have led to an overwhelming increase in the resistance to current antimalarial drugs. The urgent need for alternative antimalarial drugs has directed some of the current studies toward folkloric medicine approaches. Interestingly, the Zizyphus spina Cristi leaf extract (ZLE) has been found to exhibit antiplasmodial activity. This study evaluated the protective effect of ZLE against Plasmodium berghei-induced cerebral tissue injuries in mice. Male C57Bl/6 mice received an injection of P. berghei-infected red blood cells. Mice were divided into three groups (control, infected, and ZLE-treated), and were subjected to histological, biochemical, and molecular analyses. Murine malaria infections induced significant weight loss; however, upon ZLE treatment, the weight of mice was markedly restored. Additionally, infected mice showed brain histopathological changes and induction of oxidative damage. Significantly, ZLE treatment restored the levels of oxidative markers and antioxidant enzyme to the normal ranges. The mRNA expression of several genes in the brain of mice including Cacnb4, Adam23, Glrb, Vdac3, and Cabp1 was significantly upregulated during P. berghei infection. In contrast, ZLE markedly reduced the mRNA expression of these genes. To conclude, the results indicate that ZLE could play an important role in reducing the destructive effect of P. berghei-induced cerebral malaria owing to its antiplasmodial and antioxidant activities.


Asunto(s)
Antimaláricos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Malaria Cerebral/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Ziziphus/química , Proteínas ADAM/genética , Animales , Antioxidantes , Encéfalo/patología , Encéfalo/fisiopatología , Canales de Calcio/genética , Proteínas de Unión al Calcio/genética , Modelos Animales de Enfermedad , Malaria/tratamiento farmacológico , Malaria/parasitología , Malaria Cerebral/sangre , Malaria Cerebral/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas del Tejido Nervioso/genética , Hojas de la Planta/química , Plasmodium berghei/efectos de los fármacos , Plasmodium berghei/patogenicidad , ARN Mensajero/efectos de los fármacos , ARN Mensajero/genética , Receptores de Glicina/genética , Regulación hacia Arriba , Canales Aniónicos Dependientes del Voltaje/genética
13.
Mol Neurobiol ; 54(9): 7063-7082, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-27796746

RESUMEN

Cerebral malaria (CM) is a life-threatening complication of Plasmodium falciparum infection, which can result in long-term cognitive and behavioral deficits despite successful anti-malarial therapy. Due to the substantial social and economic burden of CM, the development of adjuvant therapies is a scientific goal of highest priority. Apart from vascular and immune responses, changes in glutamate system have been reported in CM pathogenesis suggesting a potential therapeutic target. Based on that, we hypothesized that interventions in the glutamatergic system induced by blockage of N-methyl-D-aspartate (NMDA) receptors could attenuate experimental CM long-term cognitive and behavioral outcomes. Before the development of evident CM signs, susceptible mice infected with Plasmodium berghei ANKA (PbA) strain were initiated on treatment with dizocilpine maleate (MK801, 0.5 mg/kg), a noncompetitive NMDA receptor antagonist. On day 5 post-infection, mice were treated orally with a 10-day course chloroquine (CQ, 30 mg/kg). Control mice also received saline, CQ or MK801 + CQ therapy. After 10 days of cessation of CQ treatment, magnetic resonance images (MRI), behavioral and immunological assays were performed. Indeed, MK801 combined with CQ prevented long-term memory impairment and depressive-like behavior following successful PbA infection resolution. In addition, MK801 also modulated the immune system by promoting a balance of TH1/TH2 response and upregulating neurotrophic factors levels in the frontal cortex and hippocampus. Moreover, hippocampus abnormalities observed by MRI were partially prevented by MK801 treatment. Our results indicate that NMDA receptor antagonists can be neuroprotective in CM and could be a valuable adjuvant strategy for the management of the long-term impairment observed in CM.


Asunto(s)
Conducta Animal , Cognición , Maleato de Dizocilpina/uso terapéutico , Antagonistas de Aminoácidos Excitadores/uso terapéutico , Malaria Cerebral/tratamiento farmacológico , Malaria Cerebral/fisiopatología , Fármacos Neuroprotectores/uso terapéutico , Receptores de Glutamato/metabolismo , Animales , Ansiedad/complicaciones , Ansiedad/tratamiento farmacológico , Ansiedad/fisiopatología , Conducta Animal/efectos de los fármacos , Cognición/efectos de los fármacos , Citocinas/sangre , Citocinas/metabolismo , Depresión/complicaciones , Depresión/tratamiento farmacológico , Depresión/fisiopatología , Maleato de Dizocilpina/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Ácido Glutámico/metabolismo , Hipocampo/metabolismo , Hipocampo/patología , Leucocitos/metabolismo , Imagen por Resonancia Magnética , Malaria Cerebral/complicaciones , Malaria Cerebral/patología , Memoria a Corto Plazo/efectos de los fármacos , Ratones Endogámicos C57BL , Factores de Crecimiento Nervioso/metabolismo , Fármacos Neuroprotectores/farmacología , Tamaño de los Órganos , Parasitemia/sangre , Parasitemia/complicaciones , Parasitemia/patología , Fenotipo , Plasmodium berghei/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Análisis de Supervivencia , Regulación hacia Arriba
14.
Circ Res ; 119(10): 1071-1075, 2016 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-27660286

RESUMEN

RATIONALE: A recently proposed hypothesis states that malaria may contribute to hypertension in endemic areas,1 but the role of angiotensin II (Ang II), a major regulator of blood pressure, was not considered. Elevated levels of Ang II may confer protection against malaria morbidity and mortality, providing an alternative explanation for hypertension in malaria endemic areas. OBJECTIVE: To discuss a possible alternative cause for hypertension in populations who have been under the selective pressure of malaria. METHODS AND RESULTS: We reviewed published scientific literature for studies that could establish a link between Ang II and malaria. Both genetic and functional studies suggested that high levels of Ang II may confer protection against cerebral malaria by strengthening the integrity of the endothelial brain barrier. We also describe strong experimental evidence supporting our hypothesis through genetic, functional, and interventional studies. CONCLUSIONS: A causal association between high levels of Ang II and protection from malaria pathogenesis can provide a likely explanation for the increased prevalence in hypertension observed in populations of African and South Asian origin. Furthermore, this potential causative connection might also direct unique approaches for the effective treatment of cerebral malaria.


Asunto(s)
Angiotensina II/fisiología , Hipertensión/etiología , Malaria Cerebral/tratamiento farmacológico , Malaria Falciparum/complicaciones , Modelos Biológicos , Peptidil-Dipeptidasa A/genética , África/epidemiología , Bloqueadores del Receptor Tipo 1 de Angiotensina II/uso terapéutico , Enzima Convertidora de Angiotensina 2 , Animales , Asia/epidemiología , Causalidad , Resistencia a la Enfermedad/genética , Evaluación Preclínica de Medicamentos , Enfermedades Endémicas , Endotelio Vascular/patología , Humanos , Hipertensión/etnología , Hipertensión/genética , Malaria Cerebral/fisiopatología , Malaria Falciparum/etnología , Malaria Falciparum/genética , Ratones , Polimorfismo Genético , Prevalencia , Receptor de Angiotensina Tipo 2/agonistas , Selección Genética
15.
Am J Clin Nutr ; 103(3): 919-25, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26843153

RESUMEN

BACKGROUND: The provision of iron with antimalarial treatment is the standard of care for concurrent iron deficiency and malaria. However, iron that is given during a malaria episode may not be well absorbed or used, particularly in children with severe malaria and profound inflammation. OBJECTIVES: We aimed to 1) determine baseline values of iron and inflammatory markers in children with severe malarial anemia (SMA), children with cerebral malaria (CM), and community children (CC) and 2) compare markers in iron-deficient children in each group who received 28 d of iron supplementation during antimalarial treatment with those in children who did not receive iron during treatment.. DESIGN: Seventy-nine children with CM, 77 children with SMA, and 83 CC who presented to Mulago Hospital, Kampala, Uganda, were enrolled in a 28-d iron-therapy study. Children with malaria received antimalarial treatment. All children with CM or SMA, as well as 35 CC, had zinc protoporphyrin (ZPP) concentrations ≥80 µmol/mol heme and were randomly assigned to receive a 28-d course of iron or no iron. We compared iron markers at day 0 among study groups (CM, SMA, and CC groups) and at day 28 between children in each group who were randomly assigned to receive iron or to not receive iron. RESULTS: At day 0, children with CM and SMA had greater values of C-reactive protein, ferritin, and hepcidin than those of CC. At day 28, interactions between study and treatment group were NS. Children in the no-iron compared with iron groups had similar mean values for hemoglobin (115 compared with 113 g/L, respectively; P = 0.73) and ZPP (124 compared with 124 µmol/mol heme, respectively; P = 0.96) but had lower median ferritin [101.0 µg/L (95% CI: 84.2, 121.0 µg/L) compared with 152.9 µg/L (128.8, 181.6 µg/L), respectively; P ≤ 0.001] and hepcidin [45.8 ng/mL (36.8, 56.9 ng/mL) compared with 83.1 ng/mL (67.6, 102.2 ng/mL), respectively; P < 0.011]. CONCLUSIONS: Severe inflammation is a characterization of children with CM and SMA. The withholding of iron from children with severe malaria is associated with lower ferritin and hepcidin at day 28 but not a lower hemoglobin concentration. This trial was registered at clinicaltrials.gov as NCT01093989.


Asunto(s)
Anemia/tratamiento farmacológico , Antimaláricos/uso terapéutico , Suplementos Dietéticos , Inflamación/sangre , Hierro de la Dieta/administración & dosificación , Malaria , Estado Nutricional , Anemia/sangre , Anemia/complicaciones , Biomarcadores/sangre , Proteína C-Reactiva/metabolismo , Preescolar , Esquema de Medicación , Interacciones Farmacológicas , Femenino , Ferritinas/sangre , Hemoglobinas/metabolismo , Hepcidinas/sangre , Humanos , Inflamación/etiología , Hierro de la Dieta/sangre , Hierro de la Dieta/farmacología , Hierro de la Dieta/uso terapéutico , Malaria/sangre , Malaria/complicaciones , Malaria/tratamiento farmacológico , Malaria Cerebral/sangre , Malaria Cerebral/tratamiento farmacológico , Masculino , Protoporfirinas/sangre , Índice de Severidad de la Enfermedad , Uganda
16.
PLoS One ; 10(11): e0143738, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26599510

RESUMEN

Malaria is a significant global health issue, with nearly 200 million cases in 2013 alone. Parasites obtain folate from the host or synthesize it de novo. Folate consumption has increased in many populations, prompting concerns regarding potential deleterious consequences of higher intake. The impact of high dietary folate on the host's immune function and response to malaria has not been examined. Our goal was to determine whether high dietary folate would affect response to malarial infection in a murine model of cerebral malaria. Mice were fed control diets (CD, recommended folate level for rodents) or folic acid-supplemented diets (FASD, 10x recommended level) for 5 weeks before infection with Plasmodium berghei ANKA. Survival, parasitemia, numbers of immune cells and other infection parameters were assessed. FASD mice had reduced survival (p<0.01, Cox proportional hazards) and higher parasitemia (p< 0.01, joint model of parasitemia and survival) compared with CD mice. FASD mice had lower numbers of splenocytes, total T cells, and lower numbers of specific T and NK cell sub-populations, compared with CD mice (p<0.05, linear mixed effects). Increased brain TNFα immunoreactive protein (p<0.01, t-test) and increased liver Abca1 mRNA (p<0.01, t-test), a modulator of TNFα, were observed in FASD mice; these variables correlated positively (rs = 0.63, p = 0.01). Bcl-xl/Bak mRNA was increased in liver of FASD mice (p<0.01, t-test), suggesting reduced apoptotic potential. We conclude that high dietary folate increases parasite replication, disturbs the immune response and reduces resistance to malaria in mice. These findings have relevance for malaria-endemic regions, when considering anti-folate anti-malarials, food fortification or vitamin supplementation programs.


Asunto(s)
Antimaláricos/uso terapéutico , Ácido Fólico/efectos adversos , Malaria/tratamiento farmacológico , Plasmodium berghei/patogenicidad , Animales , Malaria Cerebral/tratamiento farmacológico , Ratones , Parasitemia/tratamiento farmacológico , Plasmodium berghei/efectos de los fármacos , Modelos de Riesgos Proporcionales , Linfocitos T/metabolismo , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
17.
Sci Rep ; 5: 12671, 2015 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-26227888

RESUMEN

Malaria afflicts around 200 million people annually, with a mortality number close to 600,000. The mortality rate in Human Cerebral Malaria (HCM) is unacceptably high (15-20%), despite the availability of artemisinin-based therapy. An effective adjunct therapy is urgently needed. Experimental Cerebral Malaria (ECM) in mice manifests many of the neurological features of HCM. Migration of T cells and parasite-infected RBCs (pRBCs) into the brain are both necessary to precipitate the disease. We have been able to simultaneously target both these parameters of ECM. Curcumin alone was able to reverse all the parameters investigated in this study that govern inflammatory responses, CD8(+) T cell and pRBC sequestration into the brain and blood brain barrier (BBB) breakdown. But the animals eventually died of anemia due to parasite build-up in blood. However, arteether-curcumin (AC) combination therapy even after the onset of symptoms provided complete cure. AC treatment is a promising therapeutic option for HCM.


Asunto(s)
Encéfalo/parasitología , Curcumina/uso terapéutico , Eritrocitos/parasitología , Malaria Cerebral/tratamiento farmacológico , Plasmodium berghei/efectos de los fármacos , Animales , Artemisininas/uso terapéutico , Modelos Animales de Enfermedad , Quimioterapia Combinada , Encefalitis/tratamiento farmacológico , Eritrocitos/efectos de los fármacos , Malaria Cerebral/parasitología , Ratones
18.
Malar J ; 14: 311, 2015 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-26260055

RESUMEN

BACKGROUND: Cerebral malaria (CM) is debilitating and sometimes fatal. Disease severity has been associated with poor treatment access, therapeutic complexity and drug resistance and, thus, alternative therapies are increasingly necessary. In this study, the effect of the administration of Agaricus blazei, a mushroom of Brazilian origin in a model of CM caused by Plasmodium berghei, strain ANKA, was investigated in mice. METHODS: C57BL/6 mice were pre-treated with aqueous extract or fractions of A. blazei, or chloroquine, infected with P. berghei ANKA and then followed by daily administration of A. blazei or chloroquine. Parasitaemia, body weight, survival and clinical signs of the disease were evaluated periodically. The concentration of pro-and anti-inflammatory cytokines, histopathology and in vitro analyses were performed. RESULTS: Mice treated with A. blazei aqueous extract or fraction C, that shows antioxidant activity, displayed lower parasitaemia, increased survival, reduced weight loss and protection against the development of CM. The administration of A. blazei resulted in reduced levels of TNF, IL-1ß and IL-6 production when compared to untreated P. berghei-infected mice. Agaricus blazei (aqueous extract or fraction C) treated infected mice displayed reduction of brain lesions. Although chloroquine treatment reduced parasitaemia, there was increased production of proinflammatory cytokines and damage in the CNS not observed with A. blazei treatment. Moreover, the in vitro pretreatment of infected erythrocytes followed by in vivo infection resulted in lower parasitaemia, increased survival, and little evidence of clinical signs of disease. CONCLUSIONS: This study strongly suggests that the administration of A. blazei (aqueous extract or fraction C) was effective in improving the consequences of CM in mice and may provide novel therapeutic strategies.


Asunto(s)
Agaricus/química , Antiinflamatorios/farmacología , Antimaláricos/farmacología , Productos Biológicos/farmacología , Malaria Cerebral/tratamiento farmacológico , Animales , Antiinflamatorios/química , Antiinflamatorios/uso terapéutico , Antimaláricos/química , Antimaláricos/uso terapéutico , Productos Biológicos/química , Productos Biológicos/uso terapéutico , Encéfalo/efectos de los fármacos , Encéfalo/patología , Citocinas/sangre , Femenino , Malaria Cerebral/fisiopatología , Malaria Cerebral/prevención & control , Ratones , Ratones Endogámicos C57BL
19.
Braz. j. infect. dis ; 17(5): 579-591, Sept.-Oct. 2013. ilus, tab
Artículo en Inglés | LILACS | ID: lil-689884

RESUMEN

Cerebral malaria is the most severe and rapidly fatal neurological complication of Plasmodium falciparum infection and responsible for more than two million deaths annually. The current therapy is inadequate in terms of reducing mortality or post-treatment symptoms such as neurological and cognitive deficits. The pathophysiology of cerebral malaria is quite complex and offers a variety of targets which remain to be exploited for better therapeutic outcome. The present review discusses on the pathophysiology of cerebral malaria with particular emphasis on scope and promises of curcumin as an adjunctive therapy to improve survival and overcome neurological deficits.


Asunto(s)
Humanos , Adyuvantes Farmacéuticos/administración & dosificación , Antimaláricos/administración & dosificación , Curcumina/administración & dosificación , Malaria Cerebral/tratamiento farmacológico
20.
Braz J Infect Dis ; 17(5): 579-91, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23906771

RESUMEN

Cerebral malaria is the most severe and rapidly fatal neurological complication of Plasmodium falciparum infection and responsible for more than two million deaths annually. The current therapy is inadequate in terms of reducing mortality or post-treatment symptoms such as neurological and cognitive deficits. The pathophysiology of cerebral malaria is quite complex and offers a variety of targets which remain to be exploited for better therapeutic outcome. The present review discusses on the pathophysiology of cerebral malaria with particular emphasis on scope and promises of curcumin as an adjunctive therapy to improve survival and overcome neurological deficits.


Asunto(s)
Adyuvantes Farmacéuticos/administración & dosificación , Antimaláricos/administración & dosificación , Curcumina/administración & dosificación , Malaria Cerebral/tratamiento farmacológico , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA